Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles.

نویسندگان

  • S Pankavich
  • Y Miao
  • J Ortoleva
  • Z Shreif
  • P Ortoleva
چکیده

An approach for simulating bionanosystems such as viruses and ribosomes is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supramillion-atom nature of these bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena such as viral structural transitions or self-assembly that develop over milliseconds or longer. A key element of these multiscale systems is the cross-talk between, and consequent strong coupling of processes over many scales in space and time. Thus, overall nanoscale features of these systems control the relative probability of atomistic fluctuations, while the latter mediate the average forces and diffusion coefficients that induce the dynamics of these nanoscale features. This feedback loop is overlooked in typical coarse-grained methods. We elucidate the role of interscale cross-talk and overcome bionanosystem simulation difficulties with (1) automated construction of order parameters (OPs) describing suprananometer scale structural features, (2) construction of OP-dependent ensembles describing the statistical properties of atomistic variables that ultimately contribute to the entropies driving the dynamics of the OPs, and (3) the derivation of a rigorous equation for the stochastic dynamics of the OPs. As the OPs capture hydrodynamic modes in the host medium, "long-time tails" in the correlation functions yielding the generalized diffusion coefficients do not emerge. Since the atomic-scale features of the system are treated statistically, several ensembles are constructed that reflect various experimental conditions. Attention is paid to the proper use of the Gibbs hypothesized equivalence of long-time and ensemble averages to accommodate the varying experimental conditions. The theory provides a basis for a practical, quantitative bionanosystem modeling approach that preserves the cross-talk between the atomic and nanoscale features. A method for integrating information from nanotechnical experimental data in the derivation of equations of stochastic OP dynamics is also introduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics/order parameter extrapolation for bionanosystem simulations

A multiscale approach, molecular dynamics/order parameter extrapolation (MD/OPX), to the all-atom simulation of large bionanosystems is presented. The approach starts with the introduction of a set of order parameters (OPs) automatically generated with orthogonal polynomials to characterize the nanoscale features of bionanosystems. The OPs are shown to evolve slowly via Newton's equations, and ...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Multiscale Geometric Integration of Deterministic and Stochastic Systems

In order to accelerate computations and improve long time accuracy of numerical simulations, this thesis develops multiscale geometric integrators. For general multiscale stiff ODEs, SDEs, and PDEs, FLow AVeraging integratORs (FLAVORs) have been proposed for the coarse time-stepping without any identification of the slow or the fast variables. In the special case of deterministic and stochastic...

متن کامل

Nonlinear intrinsic variables and state reconstruction in multiscale simulations.

Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic...

متن کامل

Hybrid Stochastic-Deterministic Solution of the Chemical Master Equation

The chemical master equation (CME) is the fundamental evolution equation of the stochastic description of biochemical reaction kinetics. In most applications it is impossible to solve the CME directly due to its high dimensionality. Instead indirect approaches based on realizations of the underlying Markov jump process are used such as the stochastic simulation algorithm (SSA). In the SSA, howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 23  شماره 

صفحات  -

تاریخ انتشار 2008